33 - RLHF Problems with Scott Emmons

Reinforcement Learning from Human Feedback, or RLHF, is one of the main ways that makers of large language models make them 'aligned'. But people have long noted that there are difficulties with this approach when the models are smarter than the humans providing feedback. In this episode, I talk with Scott Emmons about his work categorizing the problems that can show up in this setting. Patreon: patreon.com/axrpodcast Ko-fi: ko-fi.com/axrpodcast The transcript: https://axrp.net/episode/2024/06/12/episode-33-rlhf-problems-scott-emmons.html Topics we discuss, and timestamps: 0:00:33 - Deceptive inflation 0:17:56 - Overjustification 0:32:48 - Bounded human rationality 0:50:46 - Avoiding these problems 1:14:13 - Dimensional analysis 1:23:32 - RLHF problems, in theory and practice 1:31:29 - Scott's research program 1:39:42 - Following Scott's research   Scott's website: https://www.scottemmons.com Scott's X/twitter account: https://x.com/emmons_scott When Your AIs Deceive You: Challenges With Partial Observability of Human Evaluators in Reward Learning: https://arxiv.org/abs/2402.17747   Other works we discuss: AI Deception: A Survey of Examples, Risks, and Potential Solutions: https://arxiv.org/abs/2308.14752 Uncertain decisions facilitate better preference learning: https://arxiv.org/abs/2106.10394 Invariance in Policy Optimisation and Partial Identifiability in Reward Learning: https://arxiv.org/abs/2203.07475 The Humble Gaussian Distribution (aka principal component analysis and dimensional analysis): http://www.inference.org.uk/mackay/humble.pdf Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!: https://arxiv.org/abs/2310.03693   Episode art by Hamish Doodles: hamishdoodles.com

Om Podcasten

AXRP (pronounced axe-urp) is the AI X-risk Research Podcast where I, Daniel Filan, have conversations with researchers about their papers. We discuss the paper, and hopefully get a sense of why it's been written and how it might reduce the risk of AI causing an existential catastrophe: that is, permanently and drastically curtailing humanity's future potential. You can visit the website and read transcripts at axrp.net.