AI Today Podcast: AI Glossary Series – Confusion Matrix, Accuracy, Precision, F1, Recall, Sensitivity, Specificity, Receiver-Operating Characteristic (ROC) Curve

In this episode of the AI Today podcast hosts Kathleen Walch and Ron Schmelzer define the terms Confusion Matrix, Accuracy, Precision, F1, Recall, Sensitivity, Specificity, Receiver-Operating Characteristic (ROC) Curve, explain how these terms relate to AI and why it's important to know about them. Show Notes: FREE Intro to CPMAI mini course CPMAI Training and Certification AI Glossary Glossary Series: Training Data, Epoch, Batch, Learning Curve Glossary Series: (Artificial) Neural Networks, Node (Neuron), Layer Glossary Series: Bias, Weight, Activation Function, Convergence, ReLU Glossary Series: Perceptron Glossary Series: Hidden Layer, Deep Learning Glossary Series: Loss Function, Cost Function & Gradient Descent Glossary Series: Backpropagation, Learning Rate, Optimizer Glossary Series: Feed-Forward Neural Network Glossary Series: OpenAI, GPT, DALL-E, Stable Diffusion Glossary Series: Natural Language Processing (NLP), NLU, NLG, Speech-to-Text, TTS, Speech Recognition AI Glossary Series - Machine Learning, Algorithm, Model AI Glossary Series - Model Tuning and Hyperparameter AI Glossary Series: Overfitting, Underfitting, Bias, Variance, Bias/Variance Tradeoff Glossary Series: Classification & Classifier, Binary Classifier, Multiclass Classifier, Decision Boundary

Om Podcasten

Cognilytica's AI Today podcast focuses on relevant information about what's going on today in the world of artificial intelligence. Hosts Kathleen Walch and Ron Schmelzer discuss pressing topics around artificial intelligence with easy to digest content, interview guests and experts on the subject, and cut through the hype and noise to identify what is really happening with adoption and implementation of AI.