BI 085 Ida Momennejad: Learning Representations

Ida and I discuss the current landscape of reinforcement learning in both natural and artificial intelligence, and how the old story of two RL systems in brains - model-free and model-based - is giving way to a more nuanced story of these two systems constantly interacting and additional RL strategies between model-free and model-based to drive the vast repertoire of our habits and goal-directed behaviors. We discuss Ida’s work on one of those “in-between” strategies, the successor representation RL strategy, which maps onto brain activity and accounts for behavior. We also discuss her interesting background and how it affects her outlook and research pursuit, and the role philosophy has played and continues to play in her thought processes. Related links: Ida’s website.Twitter: @criticalneuro.A nice review of what we discuss:Learning Structures: Predictive Representations, Replay, and Generalization. Time stamps: 0:00 - Intro 4:50 - Skip intro 9:58 - Core way of thinking 19:58 - Disillusionment 27:22 - Role of philosophy 34:51 - Optimal individual learning strategy 39:28 - Microsoft job 44:48 - Field of reinforcement learning 51:18 - Learning vs. innate priors 59:47 - Incorporating other cognition into RL 1:08:24 - Evolution 1:12:46 - Model-free and model-based RL 1:19:02 - Successor representation 1:26:48 - Are we running all algorithms all the time? 1:28:38 - Heuristics and intuition 1:33:48 - Levels of analysis 1:37:28 - Consciousness

Om Podcasten

Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand intelligence. I interview experts about their work at the interface of neuroscience, artificial intelligence, cognitive science, philosophy, psychology, and more: the symbiosis of these overlapping fields, how they inform each other, where they differ, what the past brought us, and what the future brings. Topics include computational neuroscience, supervised machine learning, unsupervised learning, reinforcement learning, deep learning, convolutional and recurrent neural networks, decision-making science, AI agents, backpropagation, credit assignment, neuroengineering, neuromorphics, emergence, philosophy of mind, consciousness, general AI, spiking neural networks, data science, and a lot more. The podcast is not produced for a general audience. Instead, it aims to educate, challenge, inspire, and hopefully entertain those interested in learning more about neuroscience and AI.