#184 Ontologies Don't Have to Be Scary: An Ontology Primer - Interview w/ Neda Abolhassani, PhD

Sign up for Data Mesh Understanding's free roundtable and introduction programs here: https://landing.datameshunderstanding.com/Please Rate and Review us on your podcast app of choice!If you want to be a guest or give feedback (suggestions for topics, comments, etc.), please see hereEpisode list and links to all available episode transcripts here.Provided as a free resource by Data Mesh Understanding / Scott Hirleman. Get in touch with Scott on LinkedIn if you want to chat data mesh.Transcript for this episode (link) provided by Starburst. See their Data Mesh Summit recordings here and their great data mesh resource center here. You can download their Data Mesh for Dummies e-book (info gated) here.Neda's LinkedIn: https://www.linkedin.com/in/neda-abolhassani-ph-d-61354329/OSDU Ontology: https://github.com/Accenture/OSDU-OntologyIn this episode, Scott interviewed Neda Abolhassani PhD, R&D Manager at Accenture Labs. To be clear, she was only representing her own views in this episode.There's some very specific language about ontology in this episode but I think it's quite approachable for most people as a good understanding of ontology, the difference with taxonomies, and some specific insight into developing and applying an ontology.Some key takeaways/thoughts from Neda's point of view:When starting developing an ontology, it's best to start from the business questions you want to answer. It is okay to choose bottom up or top down, but the business applicability is the main point.You can convince people ontologies and knowledge graphs aren't scary or that hard to learn and leverage with a small demo of what they do and how to use them.Look for open ontologies that have already been created around your domain or area you are trying to model. They can usually be easily augmented and extended but there's no reason to reinvent the wheel.Data people need to learn enough about the domain to build the right ontologies and data models but data people learning domain knowledge can "discombobulate" them :) Get the data people with the subject matter experts to learn what's necessary.Try to keep your ontology as generic as possible but still encapsulate what you need; that way it is much easier to apply the ontology to other...

Om Podcasten

Interviews with data mesh practitioners, deep dives/how-tos, anti-patterns, panels, chats (not debates) with skeptics, "mesh musings", and so much more. Host Scott Hirleman (founder of the Data Mesh Learning Community) shares his learnings - and those of the broader data community - from over a year of deep diving into data mesh. Each episode contains a BLUF - bottom line, up front - so you can quickly absorb a few key takeaways and also decide if an episode will be useful to you - nothing worse than listening for 20+ minutes before figuring out if a podcast episode is going to be interesting and/or incremental ;) Hoping to provide quality transcripts in the future - if you want to help, please reach out! Data Mesh Radio is also looking for guests to share their experience with data mesh! Even if that experience is 'I am confused, let's chat about' some specific topic. Yes, that could be you! You can check out our guest and feedback FAQ, including how to submit your name to be a guest and how to submit feedback - including anonymously if you want - here: https://docs.google.com/document/d/1dDdb1mEhmcYqx3xYAvPuM1FZMuGiCszyY9x8X250KuQ/edit?usp=sharing Data Mesh Radio is committed to diversity and inclusion. This includes in our guests and guest hosts. If you are part of a minoritized group, please see this as an open invitation to being a guest, so please hit the link above. If you are looking for additional useful information on data mesh, we recommend the community resources from Data Mesh Learning. All are vendor independent. https://datameshlearning.com/community/ You should also follow Zhamak Dehghani (founder of the data mesh concept); she posts a lot of great things on LinkedIn and has a wonderful data mesh book through O'Reilly. Plus, she's just a nice person: https://www.linkedin.com/in/zhamak-dehghani/detail/recent-activity/shares/ Data Mesh Radio is provided as a free community resource by DataStax. If you need a database that is easy to scale - read: serverless - but also easy to develop for - many APIs including gRPC, REST, JSON, GraphQL, etc. all of which are OSS under the Stargate project - check out DataStax's AstraDB service :) Built on Apache Cassandra, AstraDB is very performant and oh yeah, is also multi-region/multi-cloud so you can focus on scaling your company, not your database. There's a free forever tier for poking around/home projects and you can also use code DAAP500 for a $500 free credit (apply under payment options): https://www.datastax.com/products/datastax-astra?utm_source=DataMeshRadio