#193 The Hidden, Pesky Persistent Challenges in Data-Intensive Applications/Service/ML - Interview w/ Ebru Cucen

Sign up for Data Mesh Understanding's free roundtable and introduction programs here: https://landing.datameshunderstanding.com/Please Rate and Review us on your podcast app of choice!If you want to be a guest or give feedback (suggestions for topics, comments, etc.), please see hereEpisode list and links to all available episode transcripts here.Provided as a free resource by Data Mesh Understanding / Scott Hirleman. Get in touch with Scott on LinkedIn if you want to chat data mesh.Transcript for this episode (link) provided by Starburst. See their Data Mesh Summit recordings here and their great data mesh resource center here. You can download their Data Mesh for Dummies e-book (info gated) here.Ebru's Twitter: @ebrucucen / https://twitter.com/ebrucucenEbru's LinkedIn: https://www.linkedin.com/in/ebrucucen/In this episode, Scott interviewed Ebru Cucen, Lead Consultant at Open Credo. To be clear, Ebru was only representing her own views on the episode.Some key takeaways/thoughts from Ebru's point of view:It's far too hard for data producers to actually reliably produce clean, trustworthy, and well-documented data. We need to give them a better ability to do that, whether that is tooling or ways of working remains to be seen. Scott note: It's no wonder it's been hard for many teams to get their domains to own their own data ;)There is a hidden challenge in data-intensive service/application development. The version of the data - the schema, the API, and the data itself version - need to be understood and coordinated as the developers don't control their own data sources unlike software development of the past. But we don't have good ways of doing that right now on the process or tooling front - data product approaches help but fall short.We are lacking the tooling to easily manage data quality for producers. While there are so many data related tools, there is a real lack of things that make it easy to manage the quality. We are getting there on observing or monitoring quality, but not managing and maintaining quality.Fitness functions can help you measure if you are doing well on your data quality/reliability.As the speed to reliably ship changes on the application side increased - microservices and DevOps -, that just made the data warehouse, the data monolith that

Om Podcasten

Interviews with data mesh practitioners, deep dives/how-tos, anti-patterns, panels, chats (not debates) with skeptics, "mesh musings", and so much more. Host Scott Hirleman (founder of the Data Mesh Learning Community) shares his learnings - and those of the broader data community - from over a year of deep diving into data mesh. Each episode contains a BLUF - bottom line, up front - so you can quickly absorb a few key takeaways and also decide if an episode will be useful to you - nothing worse than listening for 20+ minutes before figuring out if a podcast episode is going to be interesting and/or incremental ;) Hoping to provide quality transcripts in the future - if you want to help, please reach out! Data Mesh Radio is also looking for guests to share their experience with data mesh! Even if that experience is 'I am confused, let's chat about' some specific topic. Yes, that could be you! You can check out our guest and feedback FAQ, including how to submit your name to be a guest and how to submit feedback - including anonymously if you want - here: https://docs.google.com/document/d/1dDdb1mEhmcYqx3xYAvPuM1FZMuGiCszyY9x8X250KuQ/edit?usp=sharing Data Mesh Radio is committed to diversity and inclusion. This includes in our guests and guest hosts. If you are part of a minoritized group, please see this as an open invitation to being a guest, so please hit the link above. If you are looking for additional useful information on data mesh, we recommend the community resources from Data Mesh Learning. All are vendor independent. https://datameshlearning.com/community/ You should also follow Zhamak Dehghani (founder of the data mesh concept); she posts a lot of great things on LinkedIn and has a wonderful data mesh book through O'Reilly. Plus, she's just a nice person: https://www.linkedin.com/in/zhamak-dehghani/detail/recent-activity/shares/ Data Mesh Radio is provided as a free community resource by DataStax. If you need a database that is easy to scale - read: serverless - but also easy to develop for - many APIs including gRPC, REST, JSON, GraphQL, etc. all of which are OSS under the Stargate project - check out DataStax's AstraDB service :) Built on Apache Cassandra, AstraDB is very performant and oh yeah, is also multi-region/multi-cloud so you can focus on scaling your company, not your database. There's a free forever tier for poking around/home projects and you can also use code DAAP500 for a $500 free credit (apply under payment options): https://www.datastax.com/products/datastax-astra?utm_source=DataMeshRadio