#253 Data Mesh Implementation Success Metrics - Data Quality - Mesh Musings 53

Key takeaways:As mentioned the last two times, at the start, it's more important to start measuring something than it is to measure the right things. Do NOT let analysis paralysis hold you back. Start measuring early to figure out what actually matters and that will also change over time.Similarly, your success metric measurement framework will probably suck to start. Oh well, get to measuring.Use fitness functions. Episode #95 with Dave Colls covers a lot on this.Data mesh really is a journey and your success measurement will be too. You will need to find small and simple ways to measure. Don't get bogged down. Your measurements will be rough and kinda depressing with the amount of challenges to tackle at the start. Just understand this is about how well you are doing, not how complete you are - there is always more to do!Reflect back on how far you've come, we often forget to do that!When it comes to data quality measurement at the implementation level, you need to think about what are you trying to accomplish. Many people go down the wrong path of trying to measure quality in a vacuum. It's about what are the expectations and why do we care about quality - to improve our decision making around data and to improve trust so more people feel they can rely on data. It's that simple. Now, measuring how well you are achieving those gets a bit harder… :D So, what to measure or consider how to measure regarding data quality at the implementation level: how often are people in compliance with their quality SLAs, whatever those SLAs may be? How quickly are you detecting and resolving/recovering from incidents? How many incidents are you having and what is their severity? Who is actually discovering the issues - are there automated detections and is it the producer or consumers discovering them? How do you actually think about trust and the impact of trust on the success of your implementation? How do you measure and increase trust levels? How does that impact value creation? And finally, what is the quality of your metadata? Please Rate and Review us on your podcast app of choice!Sign up for Data Mesh Understanding's free roundtable and introduction programs here: https://landing.datameshunderstanding.com/If you want to be a guest or give feedback (suggestions for topics, comments, etc.), please see hereEpisode list and links to all available episode transcripts here.Provided as a free resource by Data Mesh Understanding. Get in touch with Scott on LinkedIn if you want to chat data mesh.If you want to learn more and/or join the Data Mesh Learning Community, see here: https://datameshlearning.com/community/All music used this episode was found on PixaBay and was created by (including slight edits by Scott Hirleman): Lesfm, MondayHopes, SergeQuadrado,

Om Podcasten

Interviews with data mesh practitioners, deep dives/how-tos, anti-patterns, panels, chats (not debates) with skeptics, "mesh musings", and so much more. Host Scott Hirleman (founder of the Data Mesh Learning Community) shares his learnings - and those of the broader data community - from over a year of deep diving into data mesh. Each episode contains a BLUF - bottom line, up front - so you can quickly absorb a few key takeaways and also decide if an episode will be useful to you - nothing worse than listening for 20+ minutes before figuring out if a podcast episode is going to be interesting and/or incremental ;) Hoping to provide quality transcripts in the future - if you want to help, please reach out! Data Mesh Radio is also looking for guests to share their experience with data mesh! Even if that experience is 'I am confused, let's chat about' some specific topic. Yes, that could be you! You can check out our guest and feedback FAQ, including how to submit your name to be a guest and how to submit feedback - including anonymously if you want - here: https://docs.google.com/document/d/1dDdb1mEhmcYqx3xYAvPuM1FZMuGiCszyY9x8X250KuQ/edit?usp=sharing Data Mesh Radio is committed to diversity and inclusion. This includes in our guests and guest hosts. If you are part of a minoritized group, please see this as an open invitation to being a guest, so please hit the link above. If you are looking for additional useful information on data mesh, we recommend the community resources from Data Mesh Learning. All are vendor independent. https://datameshlearning.com/community/ You should also follow Zhamak Dehghani (founder of the data mesh concept); she posts a lot of great things on LinkedIn and has a wonderful data mesh book through O'Reilly. Plus, she's just a nice person: https://www.linkedin.com/in/zhamak-dehghani/detail/recent-activity/shares/ Data Mesh Radio is provided as a free community resource by DataStax. If you need a database that is easy to scale - read: serverless - but also easy to develop for - many APIs including gRPC, REST, JSON, GraphQL, etc. all of which are OSS under the Stargate project - check out DataStax's AstraDB service :) Built on Apache Cassandra, AstraDB is very performant and oh yeah, is also multi-region/multi-cloud so you can focus on scaling your company, not your database. There's a free forever tier for poking around/home projects and you can also use code DAAP500 for a $500 free credit (apply under payment options): https://www.datastax.com/products/datastax-astra?utm_source=DataMeshRadio