Data Science #6 -"On the problem of the most efficient tests of statistical hypotheses." (1933) N&P

This paper is considered one of the foundational works in modern statistical hypothesis testing. Key insights and influences: Neyman-Pearson Lemma: The paper introduced the Neyman-Pearson Lemma, which provides a method for finding the most powerful test for a simple hypothesis against a simple alternative. Type I and Type II errors: It formalized the concepts of Type I (false positive) and Type II (false negative) errors in hypothesis testing. Power of a test: The paper introduced the concept of the power of a statistical test, which is the probability of correctly rejecting a false null hypothesis. Likelihood ratio tests: It laid the groundwork for likelihood ratio tests, which are widely used in modern statistics. Optimal testing: The paper provided a framework for finding optimal statistical tests, balancing the tradeoff between Type I and Type II errors. These concepts have had a profound influence on modern statistical theory and practice, forming the basis of much of classical hypothesis testing used today in various fields of science and research.

Om Podcasten

We discuss seminal mathematical papers (sometimes really old 😎 ) that have shaped and established the fields of machine learning and data science as we know them today. The goal of the podcast is to introduce you to the evolution of these fields from a mathematical and slightly philosophical perspective. We will discuss the contribution of these papers, not just from pure a math aspect but also how they influenced the discourse in the field, which areas were opened up as a result, and so on. Our podcast episodes are also available on our youtube: https://youtu.be/wThcXx_vXjQ?si=vnMfs