Matrix Factorization For k-Means

Many people know K-means clustering as a powerful clustering technique but not all listeners will be as familiar with spectral clustering. In today’s episode, Sibylle Hess from the Data Mining group at TU Eindhoven joins us to discuss her work around spectral clustering and how its result could potentially cause a massive shift from the conventional neural networks. Listen to learn about her findings. Visit our website for additional show notes Thanks to our sponsor, Weights & Biases

Om Podcasten

The Data Skeptic Podcast features interviews and discussion of topics related to data science, statistics, machine learning, artificial intelligence and the like, all from the perspective of applying critical thinking and the scientific method to evaluate the veracity of claims and efficacy of approaches.