022 - Creating a Trusted Data Science Team That Is Indispensable to the Business with

Scott Friesen’s transformation into a data analytics professional wasn’t exactly linear. After graduating with a biology degree and becoming a pre-med student, he switched gears and managed artists in the music industry. After that, he worked at Best Buy, eventually becoming their Senior Director of Analytics for the company’s consumer insights unit. Today, Scott is the SVP of Strategic Analytics at Echo Global Logistics, a provider of technology-enabled transportation and supply chain management services. He also advises for the International Institute for Analytics. In this episode, Scott shares what he thinks data scientists and analytics leaders need to do to become a trustworthy and indispensable part of an organization. Scott and I both believe that designing good decision support applications and creating useful data science solutions involve a lot more than technical knowledge. We cover: Scott’s trust equation, why it’s critical for analytics professionals, and how he uses it to push transformation across the organization Scott’s “jazz” vs “classical” approach to creating solutions How to develop intimacy and trust with your business partners (e.g., IT) and executives, and the non-technical skills analytics teams need to develop to be successful Scott’s opinion about design thinking and analytics solutions How to talk about risk to business stakeholders when deploying data science solutions How the success of Scott’s new pricing model was impeded by something that had nothing to do with the data—and how he addressed it Scott’s take on the emerging “analytics translator” role The two key steps to career success—and volcanos Resources and Links Scott Friesen on LinkedIn Quotes from Today's Episode “You might think  it is more like classical music, but truly great analytics are more like jazz. ” — Scott “If I'm going to introduce change to an organization, then I'm going to introduce perceived risk. And so the way for me to drive positive change—the way for me to drive adding value to the organizations that I'm a part of—is the ability to create enough credibility and intimacy that I can get away with introducing change that benefits the organization.” — Scott “I categorize the analytic pursuit into three fundamental activities: The first is to observe, the second is to relate, and the third is to predict. ” — Scott “It's not enough to just understand the technology part and how to create great models. You can get all that stuff right and still fail in the last mile to deliver value.” — Brian “I tend to think of this is terms of what you called ‘intimacy.’ I don’t know if you equate that to empathy, which is really understanding the thing you are talking about from the perspective of the other person. When we do UX research, the questions themselves are what form this intimacy. An easy way to do that is by asking open-ended questions that require open-ended answers to get that person to open up to you. ” — Brian  

Om Podcasten

Are you an enterprise data or product leader seeking to increase the user adoption and business value of your ML/AI and analytical data products? While it is easier than ever to create ML and analytics from a technology perspective, do you find that getting users to use, buyers to buy, and stakeholders to make informed decisions with data remains challenging? If you lead an enterprise data team, have you heard that a ”data product” approach can help—but you’re not sure what that means, or whether software product management and UX design principles can really change consumption of ML and analytics? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting product designer’s perspective on why simply creating ML models and analytics dashboards aren’t sufficient to routinely produce outcomes for your users, customers, and stakeholders. My goal is to help you design more useful, usable, and delightful data products by better understanding your users, customers, and business sponsor’s needs. After all, you can’t produce business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release solo episodes and interviews with chief data officers, data product management leaders, and top UX design and research professionals working at the intersection of ML/AI, analytics, design and product—and now, I’m inviting you to join the #ExperiencingData listenership. Transcripts, 1-page summaries and quotes available at: https://designingforanalytics.com/ed ABOUT THE HOST Brian T. O’Neill is the Founder and Principal of Designing for Analytics, an independent consultancy helping technology leaders turn their data into valuable data products. He is also the founder of The Data Product Leadership Community. For over 25 years, he has worked with companies including DellEMC, Tripadvisor, Fidelity, NetApp, Roche, Abbvie, and several SAAS startups. He has spoken internationally, giving talks at O’Reilly Strata, Enterprise Data World, the International Institute for Analytics Symposium, Predictive Analytics World, and Boston College. Brian also hosts the highly-rated podcast Experiencing Data, advises students in MIT’s Sandbox Innovation Fund and has been published by O’Reilly Media. He is also a professional percussionist who has backed up artists like The Who and Donna Summer, and he’s graced the stages of Carnegie Hall and The Kennedy Center. Subscribe to Brian’s Insights mailing list at https://designingforanalytics.com/list.