052 - Reasons Automated Decision Making with Machine Learning Can Fail with James Taylor

In this episode of Experiencing Data, I sat down with James Taylor, the CEO of Decision Management Solutions. This discussion centers around how enterprises build ML-driven software to make decisions faster, more precise, and more consistent-and why this pursuit may fail. We covered: The role that decision management plays in business, especially when making decisions quickly, reliably, consistently, transparently and at scale. The concept of the "last mile," and why many companies fail to get their data products across it James' take on operationalization of ML models, why Brian dislikes this term Why James thinks it is important to distinguish between technology problems and organizational change problems when leveraging ML. Why machine learning is not a substitute for hard work. What happens when human-centered design is combined with decision management. James's book, Digital Decisioning: How to Use Decision Management to Get Business Value from AI, which lays out a methodology for automating decision making. Quotes from Today's Episode "If you're a large company, and you have a high volume transaction where it's not immediately obvious what you should do in response to that transaction, then you have to make a decision - quickly, at scale, reliably, consistently, transparently. We specialize in helping people build solutions to that problem." - James  "Machine learning is not a substitute for hard work, for thinking about the problem, understanding your business, or doing things. It's a way of adding value. It doesn't substitute for things." - James "One thing that I kind of have a distaste for in the data science space when we're talking about models and deploying models is thinking about 'operationalization' as something that's distinct from the technology-building process." - Brian "People tend to define an analytical solution, frankly, that will never work because[…] they're solving the wrong problem. Or they build a solution that in theory would work, but they can't get it across the last mile. Our experience is that you can't get it across the last mile if you don't begin by thinking about the last mile." - James  "When I look at a problem, I'm looking at how I use analytics to make that better. I come in as an analytics person." - James "We often joke that you have to work backwards. Instead of saying, 'here's my data, here's the analytics I can build from my data […], you have to say, 'what's a better decision look like? How do I make the decision today? What analytics will help me improve that decision?' How do I find the data I need to build those analytics?' Because those are the ones that will actually change my business." - James  "We talk about [the last mile] a lot ... which is ensuring that when the human beings come in and touch, use, and interface with the systems and interfaces that you've created, that this isthe make or break point-where technology goes to succeed or die." - Brian Links Decision Management Solutions Digital Decisioning: How to Use Decision Management to Get Business Value from AI James' Personal Blog Connect with James on Twitter Connect with James on LinkedIn  

Om Podcasten

Are you an enterprise data or product leader seeking to increase the user adoption and business value of your ML/AI and analytical data products? While it is easier than ever to create ML and analytics from a technology perspective, do you find that getting users to use, buyers to buy, and stakeholders to make informed decisions with data remains challenging? If you lead an enterprise data team, have you heard that a ”data product” approach can help—but you’re not sure what that means, or whether software product management and UX design principles can really change consumption of ML and analytics? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting product designer’s perspective on why simply creating ML models and analytics dashboards aren’t sufficient to routinely produce outcomes for your users, customers, and stakeholders. My goal is to help you design more useful, usable, and delightful data products by better understanding your users, customers, and business sponsor’s needs. After all, you can’t produce business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release solo episodes and interviews with chief data officers, data product management leaders, and top UX design and research professionals working at the intersection of ML/AI, analytics, design and product—and now, I’m inviting you to join the #ExperiencingData listenership. Transcripts, 1-page summaries and quotes available at: https://designingforanalytics.com/ed ABOUT THE HOST Brian T. O’Neill is the Founder and Principal of Designing for Analytics, an independent consultancy helping technology leaders turn their data into valuable data products. He is also the founder of The Data Product Leadership Community. For over 25 years, he has worked with companies including DellEMC, Tripadvisor, Fidelity, NetApp, Roche, Abbvie, and several SAAS startups. He has spoken internationally, giving talks at O’Reilly Strata, Enterprise Data World, the International Institute for Analytics Symposium, Predictive Analytics World, and Boston College. Brian also hosts the highly-rated podcast Experiencing Data, advises students in MIT’s Sandbox Innovation Fund and has been published by O’Reilly Media. He is also a professional percussionist who has backed up artists like The Who and Donna Summer, and he’s graced the stages of Carnegie Hall and The Kennedy Center. Subscribe to Brian’s Insights mailing list at https://designingforanalytics.com/list.