079 - How Sisu’s CPO, Berit Hoffmann, Is Approaching the Design of Their Analytics Product…and the UX Mistakes She Won’t Make Again

Berit Hoffmann, Chief Product Officer at Sisu, tackles design from a customer-centric perspective with a focus on finding problems at their source and enabling decision making. However, she had to learn some lessons the hard way along the road, and in this episode, we dig into those experiences and what she’s now doing differently in her current role as a CPO. In particular, Berit reflects on her “ivory tower design” experience at a past startup called Bebop. In that time, she quickly realized the importance of engaging with customer needs and building intuitive and simple solutions for complex problems. Berit also discusses the Double Diamond Process and how it shapes her own decision-making and the various ways she carries her work at Sisu.   In this episode, we also cover: How Berit’s “ivory tower design experience” at Bebop taught her the importance of dedicating time to focus on the customer. (01:31) What Berit looked for as she researched Sisu prior to joining - and how she and Peter Bailis, Founder and CEO, share the same philosophy on what a product’s user experience should look like. (03:57) Berit discusses the Double Diamond Process and the life cycle of designing a project - and shares her take on designing for decision making. (10:17) Sisu’s shift from answering the why to the what - and how they approach user testing using product as a metric layer. (19:10) Berit explores the tension that can arise when designing a decision support tool. (31:03) Quotes from Today’s Episode “I kind of learned the hard way, the importance of spending that time with customers upfront and really digging into understanding what problems are most challenging for them. Those are the problems to solve, not the ones that you as a product manager or as a designer think are most important. It is a lesson I carry forward with me in terms of how I approach anything I'm going to work on now. The sooner I can get it in front of users, the sooner I can get feedback and really validate or invalidate my assumptions, the better because they're probably going to tell me why I'm wrong.”- Berit Hoffmann (03:15)   “As a designer and product thinker, the problem finding is almost more important than the solutioning because the solution is easy when you really understand the need. It's not hard to come up with good solutions when the need is so clear, which you can only get through conversation, inquiry, shadowing, and similar research and design methods.” - Brian T. O’Neill (@rhythmspice) (10:54)   “Decision-making is a human process. There's no world in which you're going to spit out an answer and say, ‘just go do it.’ Software is always going to be missing the rich context and expertise that humans have about their business and the context in which they're making the decision. So, what that says to me is inherently, decision-making is also going to be an iterative process. [...] What I think technology can do is it can automate and accelerate a lot of the manual repetitive steps in the analysis that are taking up a bunch of time today. Especially as data is getting exponentially more complex and multi-dimensional.”- Berit Hoffmann  (17:44)   “When we talk to people about solving problems, 9 out of 10 people say they would add something to whatever it is that you're making to make it better. So often, when designers think about modernism, it is very much about ‘what can I take away that will help it make it better?’ And, I think this gets lost. The tendency with data, when you think about how much we're collecting and the scale of it, is that adding it is always going to make it better and it doesn't make it better all the time. It can slow things down and cause noise. It can make people ask even more questions. When in reality, the goal is to make a decision.”- Brian T. O’Neill (@rhythmspice) (30:11)   “I’m trying to resist the urge to get industry-specific or metric specific in any of the kind of baseline functionality in the product. And

Om Podcasten

Are you an enterprise data or product leader seeking to increase the user adoption and business value of your ML/AI and analytical data products? While it is easier than ever to create ML and analytics from a technology perspective, do you find that getting users to use, buyers to buy, and stakeholders to make informed decisions with data remains challenging? If you lead an enterprise data team, have you heard that a ”data product” approach can help—but you’re not sure what that means, or whether software product management and UX design principles can really change consumption of ML and analytics? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting product designer’s perspective on why simply creating ML models and analytics dashboards aren’t sufficient to routinely produce outcomes for your users, customers, and stakeholders. My goal is to help you design more useful, usable, and delightful data products by better understanding your users, customers, and business sponsor’s needs. After all, you can’t produce business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release solo episodes and interviews with chief data officers, data product management leaders, and top UX design and research professionals working at the intersection of ML/AI, analytics, design and product—and now, I’m inviting you to join the #ExperiencingData listenership. Transcripts, 1-page summaries and quotes available at: https://designingforanalytics.com/ed ABOUT THE HOST Brian T. O’Neill is the Founder and Principal of Designing for Analytics, an independent consultancy helping technology leaders turn their data into valuable data products. He is also the founder of The Data Product Leadership Community. For over 25 years, he has worked with companies including DellEMC, Tripadvisor, Fidelity, NetApp, Roche, Abbvie, and several SAAS startups. He has spoken internationally, giving talks at O’Reilly Strata, Enterprise Data World, the International Institute for Analytics Symposium, Predictive Analytics World, and Boston College. Brian also hosts the highly-rated podcast Experiencing Data, advises students in MIT’s Sandbox Innovation Fund and has been published by O’Reilly Media. He is also a professional percussionist who has backed up artists like The Who and Donna Summer, and he’s graced the stages of Carnegie Hall and The Kennedy Center. Subscribe to Brian’s Insights mailing list at https://designingforanalytics.com/list.