148 - UI/UX Design Considerations for LLMs in Enterprise Applications (Part 2)

Ready for more ideas about UX for AI and LLM applications in enterprise environments? In part 2 of my topic on UX considerations for LLMs, I explore how an LLM might be used for a fictitious use case at an insurance company—specifically, to help internal tools teams to get rapid access to primary qualitative user research. (Yes, it’s a little “meta”, and I’m also trying to nudge you with this hypothetical example—no secret!) ;-) My goal with these episodes is to share questions you might want to ask yourself such that any use of an LLM is actually contributing to a positive UX outcome  Join me as I cover the implications for design, the importance of foundational data quality, the balance between creative inspiration and factual accuracy, and the never-ending discussion of how we might handle hallucinations and errors posing as “facts”—all with a UX angle. At the end, I also share a personal story where I used an LLM to help me do some shopping for my favorite product: TRIP INSURANCE! (NOT!)      Highlights/ Skip to: (1:05) I introduce a hypothetical  internal LLM tool and what the goal of the tool is for the team who would use it  (5:31) Improving access to primary research findings for better UX  (10:19) What “quality data” means in a UX context (12:18) When LLM accuracy maybe doesn’t matter as much (14:03) How AI and LLMs are opening the door for fresh visioning work (15:38) Brian’s overall take on LLMs inside enterprise software as of right now (18:56) Final thoughts on UX design for LLMs, particularly in the enterprise (20:25) My inspiration for these 2 episodes—and how I had to use ChatGPT to help me complete a purchase on a website that could have integrated this capability right into their website     Quotes from Today’s Episode “If we accept that the goal of most product and user experience research is to accelerate the production of quality services, products, and experiences, the question is whether or not using an LLM for these types of questions is moving the needle in that direction at all. And secondly, are the potential downsides like hallucinations and occasional fabricated findings, is that all worth it? So, this is a design for AI problem.” - Brian T. O’Neill (8:09) “What’s in our data? Can the right people change it when the LLM is wrong? The data product managers and AI leaders reading this or listening know that the not-so-secret path to the best AI is in the foundational data that the models are trained on. But what does the word *quality* mean from a product standpoint and a risk reduction one, as seen from an end-users’ perspective? Somebody who’s trying to get work done? This is a different type of quality measurement.” - Brian T. O’Neill (10:40) “When we think about fact retrieval use cases in particular, how easily can product teams—internal or otherwise—and end-users understand the confidence of responses? When responses are wrong, how easily, if at all, can users and product teams update the model’s responses? Errors in large language models may be a significant design consideration when we design probabilistic solutions, and we no longer control what exactly our products and software are going to show to users. If bad UX can include leading people down the wrong path unknowingly, then AI is kind of like the team on the other side of the tug of war that we’re playing.” - Brian T. O’Neill (11:22) “As somebody who writes a lot for my consulting business, and composes music in another, one of the hardest parts for creators can be the zero-to-one problem of getting started—the blank page—and this is a place where I think LLMs have great potential. But it also means we need to do the proper research to understand our audience, and when or where they’re doing truly generative or creative work—such that we can take a generative UX to the next level that goes beyond delivering banal and obviously derivative content.” - Brian T. O’Neill (13:31) “One thing I actually like about the hype, investm

Om Podcasten

Are you an enterprise data or product leader seeking to increase the user adoption and business value of your ML/AI and analytical data products? While it is easier than ever to create ML and analytics from a technology perspective, do you find that getting users to use, buyers to buy, and stakeholders to make informed decisions with data remains challenging? If you lead an enterprise data team, have you heard that a ”data product” approach can help—but you’re not sure what that means, or whether software product management and UX design principles can really change consumption of ML and analytics? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting product designer’s perspective on why simply creating ML models and analytics dashboards aren’t sufficient to routinely produce outcomes for your users, customers, and stakeholders. My goal is to help you design more useful, usable, and delightful data products by better understanding your users, customers, and business sponsor’s needs. After all, you can’t produce business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release solo episodes and interviews with chief data officers, data product management leaders, and top UX design and research professionals working at the intersection of ML/AI, analytics, design and product—and now, I’m inviting you to join the #ExperiencingData listenership. Transcripts, 1-page summaries and quotes available at: https://designingforanalytics.com/ed ABOUT THE HOST Brian T. O’Neill is the Founder and Principal of Designing for Analytics, an independent consultancy helping technology leaders turn their data into valuable data products. He is also the founder of The Data Product Leadership Community. For over 25 years, he has worked with companies including DellEMC, Tripadvisor, Fidelity, NetApp, Roche, Abbvie, and several SAAS startups. He has spoken internationally, giving talks at O’Reilly Strata, Enterprise Data World, the International Institute for Analytics Symposium, Predictive Analytics World, and Boston College. Brian also hosts the highly-rated podcast Experiencing Data, advises students in MIT’s Sandbox Innovation Fund and has been published by O’Reilly Media. He is also a professional percussionist who has backed up artists like The Who and Donna Summer, and he’s graced the stages of Carnegie Hall and The Kennedy Center. Subscribe to Brian’s Insights mailing list at https://designingforanalytics.com/list.