#13 Building a Probabilistic Programming Framework in Julia, with Chad Scherrer

How is Julia doing? I’m talking about the programming language, of course! What does the probabilistic programming landscape in Julia look like? What are Julia’s distinctive features, and when would it be interesting to use it?

To talk about that, I invited Chad Scherrer. Chad is a Senior Research Scientist at RelationalAI, a company that uses Artificial Intelligence technologies to solve business problems.

Coming from a mathematics background, Chad did his PhD at Indiana University of Bloomington and has been working in statistics and data science for a decade now. Through this experience, he’s been using and developing probabilistic programming languages – so he’s familiar with python, R, PyMC, Stan and all the blockbusters of the field. 

But since 2018, he’s particularly interested in Julia and developed Soss, an open-source lightweight probabilistic programming package for Julia. In this episode, he’ll tell us why he decided to create this package, and which choices he made that made Soss what it is today. But we’ll also talk about other projects in Julia, like Turing or Gen for instance.

Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !

Links from the show:

--- Send in a voice message: https://anchor.fm/learn-bayes-stats/message

Om Podcasten

Are you a researcher or data scientist / analyst / ninja? Do you want to learn Bayesian inference, stay up to date or simply want to understand what Bayesian inference is? Then this podcast is for you! You'll hear from researchers and practitioners of all fields about how they use Bayesian statistics, and how in turn YOU can apply these methods in your modeling workflow. When I started learning Bayesian methods, I really wished there were a podcast out there that could introduce me to the methods, the projects and the people who make all that possible. So I created "Learning Bayesian Statistics", where you'll get to hear how Bayesian statistics are used to detect black matter in outer space, forecast elections or understand how diseases spread and can ultimately be stopped. But this show is not only about successes -- it's also about failures, because that's how we learn best. So you'll often hear the guests talking about what *didn't* work in their projects, why, and how they overcame these challenges. Because, in the end, we're all lifelong learners! My name is Alex Andorra by the way, and I live in Estonia. By day, I'm a data scientist and modeler at the PyMC Labs consultancy. By night, I don't (yet) fight crime, but I'm an open-source enthusiast and core contributor to the python packages PyMC and ArviZ. I also love election forecasting and, most importantly, Nutella. But I don't like talking about it – I prefer eating it. So, whether you want to learn Bayesian statistics or hear about the latest libraries, books and applications, this podcast is for you -- just subscribe! You can also support the show and unlock exclusive Bayesian swag on Patreon!