#24 Bayesian Computational Biology in Julia, with Seth Axen

Do you know what proteins are, what they do and why they are useful? Well, be prepared to be amazed! In this episode, Seth Axen will tell us about the fascinating world of protein structures and computational biology, and how his work of Bayesian modeler fits into that!

Passionate about mathematics and statistics, Seth is finishing a PhD in bioinformatics at the Sali Lab of the University of California, San Francisco (UCSF). His research interests span the broad field of computational biology: using computer science, mathematics, and statistics to understand biological systems. His current research focuses on inferring protein structural ensembles. 

Open source development is also very dear to his heart, and indeed he contributes to many open source packages, especially in the Julia ecosystem. In particular, he develops and maintains ArviZ.jl, the Julia port of ArviZ, a platform-agnostic python package to visualize and diagnose your Bayesian models. Seth will tell us how he became involved in ArviZ.jl, what its strengths and weaknesses are, and how it fits into the Julia probabilistic programming landscape.

Ow, and as a bonus, you’ll discover why Seth is such a fan of automatic differentiation, aka « autodiff » — I actually wanted to edit this part out but Seth strongly insisted I kept it. Just kidding of course — or, am I… ?

Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work at https://bababrinkman.com/ !

Links from the show:

--- Send in a voice message: https://anchor.fm/learn-bayes-stats/message

Om Podcasten

Are you a researcher or data scientist / analyst / ninja? Do you want to learn Bayesian inference, stay up to date or simply want to understand what Bayesian inference is? Then this podcast is for you! You'll hear from researchers and practitioners of all fields about how they use Bayesian statistics, and how in turn YOU can apply these methods in your modeling workflow. When I started learning Bayesian methods, I really wished there were a podcast out there that could introduce me to the methods, the projects and the people who make all that possible. So I created "Learning Bayesian Statistics", where you'll get to hear how Bayesian statistics are used to detect black matter in outer space, forecast elections or understand how diseases spread and can ultimately be stopped. But this show is not only about successes -- it's also about failures, because that's how we learn best. So you'll often hear the guests talking about what *didn't* work in their projects, why, and how they overcame these challenges. Because, in the end, we're all lifelong learners! My name is Alex Andorra by the way, and I live in Estonia. By day, I'm a data scientist and modeler at the PyMC Labs consultancy. By night, I don't (yet) fight crime, but I'm an open-source enthusiast and core contributor to the python packages PyMC and ArviZ. I also love election forecasting and, most importantly, Nutella. But I don't like talking about it – I prefer eating it. So, whether you want to learn Bayesian statistics or hear about the latest libraries, books and applications, this podcast is for you -- just subscribe! You can also support the show and unlock exclusive Bayesian swag on Patreon!