Linear Digressions


av Linear Digressions | Publicerades 7/22/2019

If you’re Google or Netflix, and you have a recommendation or search system as part of your bread and butter, what’s the best way to test improvements to your algorithm? A/B testing is the canonical answer for testing how users respond to software changes, but it gets tricky really fast to think about what an A/B test means in the context of an algorithm that returns a ranked list. That’s why we’re talking about interleaving this week—it’s a simple modification to A/B testing that makes it much easier to race two algorithms against each other and find the winner, and it allows you to do it with much less data than a traditional A/B test. Relevant links:

Om Podcasten

In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.