NLP is not NLU and GPT-3 - Walid Saba

#machinelearning This week Dr. Tim Scarfe, Dr. Keith Duggar and Yannic Kilcher speak with veteran NLU expert Dr. Walid Saba.  Walid is an old-school AI expert. He is a polymath, a neuroscientist, psychologist, linguist,  philosopher, statistician, and logician. He thinks the missing information problem and lack of a typed ontology is the key issue with NLU, not sample efficiency or generalisation. He is a big critic of the deep learning movement and BERTology. We also cover GPT-3 in some detail in today's session, covering Luciano Floridi's recent article "GPT‑3: Its Nature, Scope, Limits, and Consequences" and a commentary on the incredible power of GPT-3 to perform tasks with just a few examples including the Yann LeCun commentary on Facebook and Hackernews.  Time stamps on the YouTube version 0:00:00 Walid intro  00:05:03 Knowledge acquisition bottleneck  00:06:11 Language is ambiguous  00:07:41 Language is not learned  00:08:32 Language is a formal language  00:08:55 Learning from data doesn’t work   00:14:01 Intelligence  00:15:07 Lack of domain knowledge these days  00:16:37 Yannic Kilcher thuglife comment  00:17:57 Deep learning assault  00:20:07 The way we evaluate language models is flawed  00:20:47 Humans do type checking  00:23:02 Ontologic  00:25:48 Comments On GPT3  00:30:54 Yann lecun and reddit  00:33:57 Minds and machines - Luciano  00:35:55 Main show introduction  00:39:02 Walid introduces himself  00:40:20 science advances one funeral at a time  00:44:58 Deep learning obsession syndrome and inception  00:46:14 BERTology / empirical methods are not NLU  00:49:55 Pattern recognition vs domain reasoning, is the knowledge in the data  00:56:04 Natural language understanding is about decoding and not compression, it's not learnable.  01:01:46 Intelligence is about not needing infinite amounts of time  01:04:23 We need an explicit ontological structure to understand anything  01:06:40 Ontological concepts  01:09:38 Word embeddings  01:12:20 There is power in structure  01:15:16 Language models are not trained on pronoun disambiguation and resolving scopes  01:17:33 The information is not in the data  01:19:03 Can we generate these rules on the fly? Rules or data?  01:20:39 The missing data problem is key  01:21:19 Problem with empirical methods and lecunn reference  01:22:45 Comparison with meatspace (brains)  01:28:16 The knowledge graph game, is knowledge constructed or discovered  01:29:41 How small can this ontology of the world be?  01:33:08 Walids taxonomy of understanding  01:38:49 The trend seems to be, less rules is better not the othe way around?  01:40:30 Testing the latest NLP models with entailment  01:42:25 Problems with the way we evaluate NLP  01:44:10 Winograd Schema challenge  01:45:56 All you need to know now is how to build neural networks, lack of rigour in ML research  01:50:47 Is everything learnable  01:53:02  How should we elevate language systems?  01:54:04 10 big problems in language (missing information)  01:55:59 Multiple inheritance is wrong  01:58:19 Language is ambiguous  02:01:14 How big would our world ontology need to be?  02:05:49 How to learn more about NLU  02:09:10 AlphaGo  Walid's blog: https://medium.com/@ontologik LinkedIn: https://www.linkedin.com/in/walidsaba/

Om Podcasten

Welcome! We engage in fascinating discussions with pre-eminent figures in the AI field. Our flagship show covers current affairs in AI, cognitive science, neuroscience and philosophy of mind with in-depth analysis. Our approach is unrivalled in terms of scope and rigour – we believe in intellectual diversity in AI, and we touch on all of the main ideas in the field with the hype surgically removed. MLST is run by Tim Scarfe, Ph.D (https://www.linkedin.com/in/ecsquizor/) and features regular appearances from MIT Doctor of Philosophy Keith Duggar (https://www.linkedin.com/in/dr-keith-duggar/).