27 - What do Neural Machine Translation Models Learn about Morphology?, with Yonatan Belinkov

ACL 2017 paper by Yonatan Belinkov and others at MIT and QCRI. Yonatan comes on to tell us about their work. They trained a neural MT system, then learned models on top of the NMT representation layers to do morphology tasks, trying to probe how much morphological information is encoded by the MT system. We talk about the specifics of their model and experiments, insights they got from doing these experiments, and how this work relates to other work on representation learning in NLP. https://www.semanticscholar.org/paper/What-do-Neural-Machine-Translation-Models-Learn-ab-Belinkov-Durrani/37ac87ccea1cc9c78a0921693dd3321246e5ef07

Om Podcasten

**The podcast is currently on hiatus. For more active NLP content, check out the Holistic Intelligence Podcast linked below.** Welcome to the NLP highlights podcast, where we invite researchers to talk about their work in various areas in natural language processing. All views expressed belong to the hosts/guests, and do not represent their employers.