40 - On the State of the Art of Evaluation in Neural Language Models, with Gábor Melis

Recent arxiv paper by Gábor Melis, Chris Dyer, and Phil Blunsom. Gábor comes on the podcast to tell us about his work. He performs a thorough comparison between vanilla LSTMs and recurrent highway networks on the language modeling task, showing that when both methods are given equal amounts of hyperparameter tuning, LSTMs perform better, in contrast to prior work claiming that recurrent highway networks perform better. We talk about parameter tuning, training variance, language model evaluation, and other related issues. https://www.semanticscholar.org/paper/On-the-State-of-the-Art-of-Evaluation-in-Neural-La-Melis-Dyer/2397ce306e5d7f3d0492276e357fb1833536b5d8

Om Podcasten

**The podcast is currently on hiatus. For more active NLP content, check out the Holistic Intelligence Podcast linked below.** Welcome to the NLP highlights podcast, where we invite researchers to talk about their work in various areas in natural language processing. All views expressed belong to the hosts/guests, and do not represent their employers.