Ghost Imaging with Quantum Light

Physics Colloquium 26th May 2017 delivered by Professor Miles Padgett, University of Glasgow Ghost imaging and ghost diffraction were first demonstrated by Shih and co-workers using photon pairs created by parametric down-conversion. They were able to obtain an image or a diffraction pattern using photons that had never interacted with the object, relying instead on the correlations with photons that have. In a typical ghost-imaging configuration, the down-converted photons are directed into two separate optical arms. The object is placed in one arm and a single-pixel “heralding” detector detects the photons transmitted through this object. The signal from this detector triggers a camera positioned in the other arm, which then detects the spatial position of the correlated photon. The image is recovered from the coincidence detection of the two photons. But what sets the resolution of the resulting images? The resolution of the heralding arm, the resolution of the camera optics, or something else? This talk will present an examination of the resolution limits of the ghost imaging and ghost diffraction. Beyond consideration of these limits, our ghost diffraction is an implementation of Popper’s thought experiment, and while our results agree with his experimental predictions, we show how these results do not contradict the Copenhagen Interpretation.

Om Podcasten

The Department of Physics public lecture series. An exciting series of lectures about the research at Oxford Physics take place throughout the academic year. Looking at topics diverse as the creation of the universe to the science of climate change. Features episodes previously published as: (1) 'Oxford Physics Alumni': "Informal interviews with physics alumni at events, lectures and other alumni related activities." (2) 'Physics and Philosophy: Arguments, Experiments and a Few Things in Between': "A series which explores some of the links between physics and philosophy, two of the most fundamental ways with which we try to answer our questions about the world around us. A number of the most pertinent topics which bridge the disciplines are discussed - the nature of space and time, the unpredictable results of quantum mechanics and their surprising consequences and perhaps most fundamentally, the nature of the mind and how far science can go towards explaining and understanding it. Featuring interviews with Dr. Christopher Palmer, Prof. Frank Arntzenius, Prof. Vlatko Vedral, Dr. David Wallace and Prof. Roger Penrose."